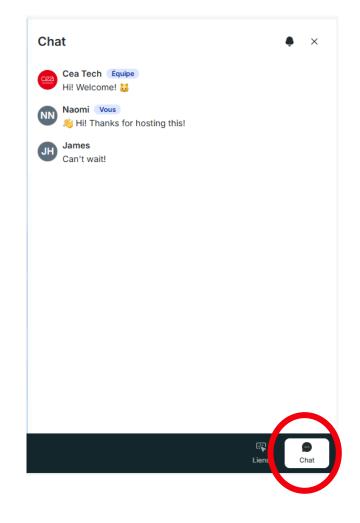


NEMOSHIP

DECARBONISATION OF MARITIME TRANSPORT WITH LARGE BATTERY **SYSTEMS WEBINAR #1**

November 18th 2025



HOUSEKEEPING

NEMOSHIP

- Your microphones will be muted during the event
- We will have 2 Q&A sessions
- You can ask your questions in the chat box at anytime during the event (see bottom right of the screen). If possible indicate to which speaker you wish to address the question.
- Slides will be shared on our website: https://nemoship.eu/results/

AGENDA

14:00 – 14:05 Welcome - *CEA*, *Solène Goy*

14:05 – 14:20 NEMOSHIP Overview - CEA, Solène Goy

14:20 – 14:40 NEMOSHIP BESS design – Corvus, Tommy Sletten

14:40 – 14:45 Q&A

14:45 – 15:10 Experiences from NEMOSHIP 1.1 MWh heterogeneous BESS installation – *Solstad, Kjetil Vatland Olsen and Equinor, Wei He*

15:10 – 15:40 NEMOSHIP BESS control with BPMS – CEA, Guénaël Le Solliec / VUB, Saeed Kazemian / Elkon, Mert Can Celik

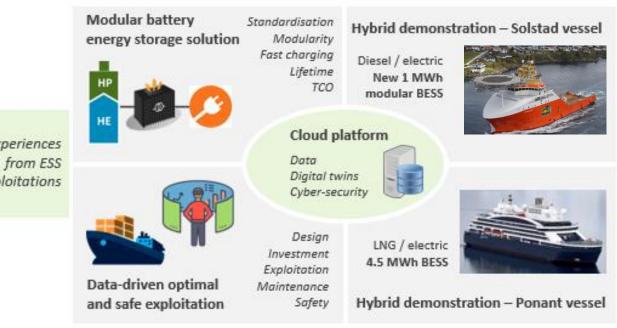
15:40 - 15:50 Q&A

15:50 – 16:00 Closing - *CEA*, *Solène Goy*

BESS: Battery Energy Storage System

NEMOSHIP OVERVIEW

Solène Goy, CEA



NEMOSHIP	
Title	New modular electrical architecture & digital platform to optimise large battery systems on ships
Call ID	HORIZON-CL5-2022-D5-01-01 - Exploiting electrical energy storage systems and better optimising large battery electric power within fully battery electric and hybrid ships (ZEWT Partnership)
Туре	Innovation Action
Lead	CEA
Duration	4 years - 01/01/2023 to 31/12/2026
Total cost	11.3 M Euros
EU contribution	7.9 M Euros

PROJECT EXPECTED OUTCOMES

A modular and standardised 1.1

MWh battery energy storage solution enabling to exploit different types of batteries (HE and HP)

2 main innovative solutions:

A cloud-based digital platform enabling a data-driven optimal and safe exploitation

Adaptability

vessels

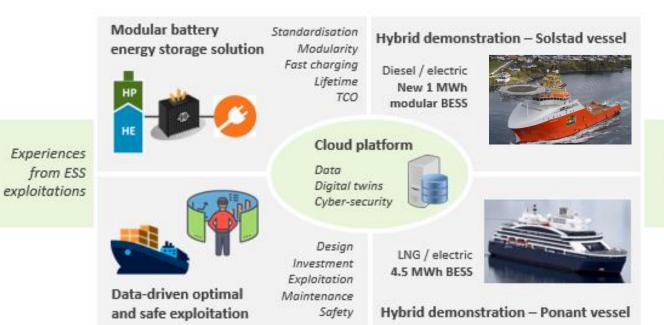
for full electric

HE: High-Energy

Experiences

exploitations

Optimized for sustained energy delivery, suitable for longer voyages and continuous operation.


HP: High-Power

Designed for rapid discharge and charge cycles, ideal for dynamic marine applications.

PROJECT EXPECTED OUTCOMES

2 main innovative solutions:

Adaptability

vessels

for full electric

- A modular and standardised 1.1 MWh battery energy storage solution enabling to exploit different types of batteries (HE and HP)
- A cloud-based digital platform enabling a data-driven optimal and safe exploitation
- → Demonstrate their maturity for hybrid ships at TRL 7 and their adaptability for full-electric ships

PROJECT EXPECTED OUTCOMES

and safe exploitation

Safety

Hybrid demonstration - Ponant vessel

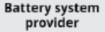
2 main innovative solutions:

- A modular and standardised 1.1
 MWh battery energy storage solution enabling to exploit different types of batteries (HE and HP)
- A cloud-based digital platform enabling a data-driven optimal and safe exploitation
- → Demonstrate their maturity for hybrid ships at TRL 7 and their adaptability for full-electric ships

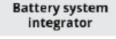
Consortium:

- 6 countries
- 11 complementary partners

Covering the entire value chain:

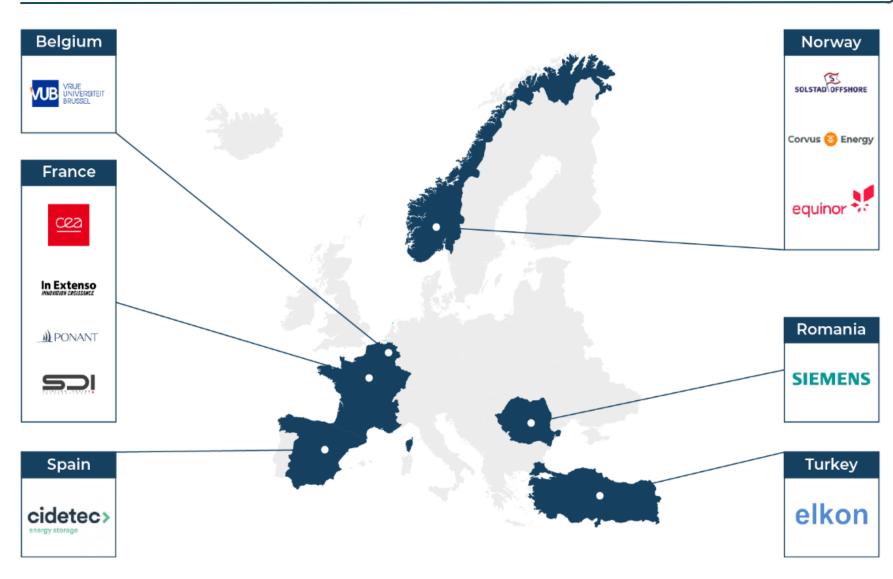

- 3 Research Technology
 Organization (CEA, VUB, Cidetec)
- 1 SME (SDI)
- 7 private large groups (Siemens, Corvus, Elkon, Solstad, Equinor, Ponant, In Extenso)

RTO for system design, optimization & development



Software provider

End-users shipowner


Consulting for exploitation strategy & impact maximization

CONSORTIUM

NEMOSHIP

WP9 Dissemination, exploitation and communication

Experiences learnt & requirements

WP2 Digital platform development and implementation

WP3 Modular BESS design, integration and testing

WP4 Multi-level

management systems development **WP5** Modular 1 MWh BESS demonstration and optimisation for a retrofitted vessel

Semi-virtual demonstration for full electric vessels

WP7

WP6 4.5 MWh BESS optimisation for a newly designed hybrid vessel

WP10 Project management

WP8

Final assessment, replicability & deployment plans

WORK PLAN

NEMOSHIP

WP9 Dissemination, exploitation and communication WP5 Modular 1 MWh BESS demonstration and optimisation WP8 WP2 Digital platform Final for a retrofitted vessel Experiences learnt & development and WP4 assessment, implementation Multi-level WP7 replicability requirements management Semi-virtual demonstration & deployment systems for full electric vessels plans WP3 Modular BESS development design, integration WP6 4.5 MWh BESS and testing optimisation for a newly designed hybrid vessel WP10 Project management

Today:

- WP3 (BESS design, integration and testing)
- WP4 (control algorithm development)
- WP5 (BESS demonstration and optimisation)

RESULTS ACHIEVED SO FAR

- Review of past R&I projects (see D1.2 <u>here</u>) / Analysis of data and lessons learnt from existing battery systems See <u>D1.1</u>
- Definition of requirements/specifications for the digital platform and for the battery system (e.g. D2.1 here)
- Sizing of the battery system (including High Energy/High Power battery share) (see paper <u>here</u>)
- Control algorithms for the heterogeneous BESS (BPMS)
- BESS installation on Normand Drott
- Development of the digital platform + predictive and optimal energy management algorithms

DISSEMINATION

- NEMOSHIP is a member of the <u>EUWT-Synergies Ecosystem</u> (with FLEXSHIP, HYPOBATT, SEABAT, AENEAS, DT4GS, BlueBARGE)
- 1st NEMOSHIP journal paper published <u>here</u>
- 7 other conference papers presented in 2024 and 2025 <u>here</u>
- Get the latest updates on our:
 - Follow us on our <u>Linkedin page</u>
 - Website: https://nemoship.eu/ Keep an eye on our website for new deliverables!
 - Registrer for our newsletter on our website

NEMOSHIP BESS DESIGN

Tommy Sletten, Corvus

ESS TECHNOLOGY EVOLUTION

Advancement over time

Corvus AT 6500

2016

÷50% Footprint

÷50% Volume

÷30% Weight

2025

÷50% Footprint

÷50% Volume

÷30% Weight

Corvus Blue Whale

Corvus Orca

Sustainable shipping

NEMOSHIP

Orca Energy

- NMC Chemistry
- Pouch Style Cell
- Air Cooled
- Racked Design

Blue WhaleNxtGen

- LFP Chemistry
- Prismatic Cell
- Liquid Cooled
- Rackless Design

Dolphin Energy

NxtGen

- NCA Chemistry
- Cylindrical Cell
- Air or Liquid Cooled
- Rackless Design

Dolphin Power

NxtGen

- NCA Chemistry
- Cylindrical Cell
- Liquid Cooled
- Rackless Design

NEMOSHIP

Modular Design Approach: Supports quality and cost efficiency

Modularized design, where cell-agnostic components can be applied across product lines offers many benefits.

Modular design supports improved:

- Product quality
- Performance reliability
- Cost efficiency
- Production timelines

NEMOSHIP BESS DESIGN CRITERIA

- Two different battery systems
- ~1MWh total size
- Working in parallel
- Able to supply 2300kW max power
- 1100V
- Both systems same lifetime

NEMOSHIP BESS SELECTION

Orca Energy

- NMC Chemistry
- Pouch Style Cells
- Air Cooled
- Racked Design

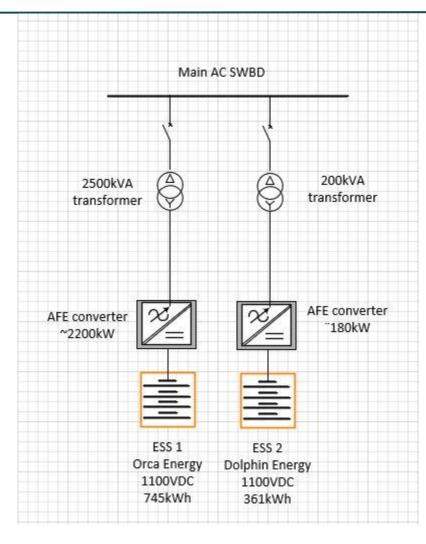
Dolphin Energy

- NCA Chemistry
- Cylindrical Cells
- Air Cooled
- Racked less Design

Total System Energy (+-2%)	745	kWh
Design Life	10	Years
Maximum Voltage	1,100	VDC
Minimum Voltage	800	VDC
Total Dry Mass (+-15kg/pack, incl rack)	9,768	Kg

Total BESS: 1.1 MWh

Total System Energy (+-2%)	361,2	kWh
Design Life	10	Years
Maximum Operational Voltage	1100	VDC
Minimum Operational Voltage	713	VDC
Total Dry Mass (+-3%)	2187	Kg

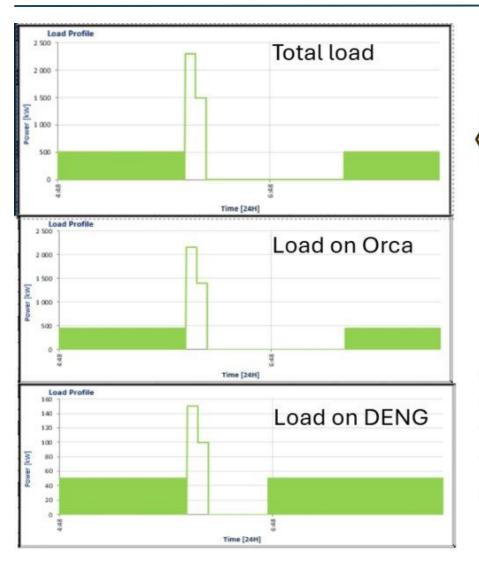

CONNECTION TO SHIP SYSTEM

Orca Energy

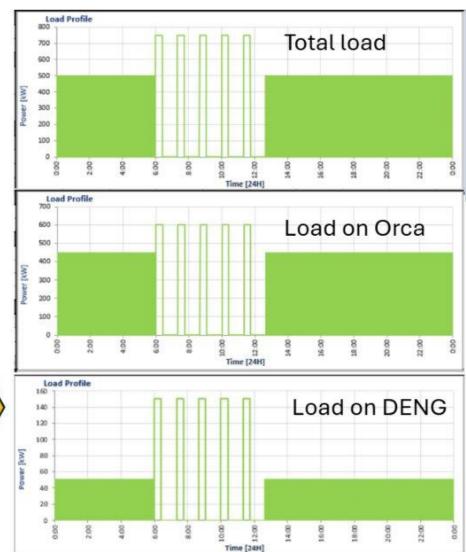
Max 3C

Dolphin Energy Nxt Gen

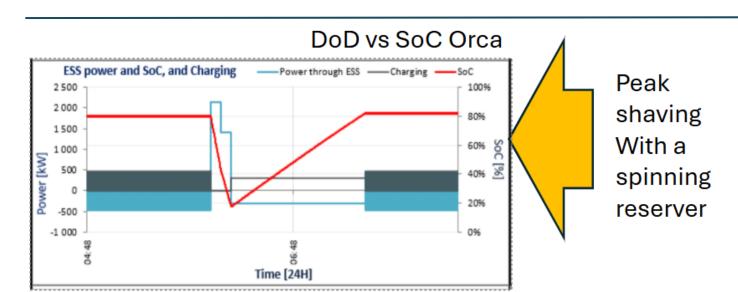
Max 0.5C

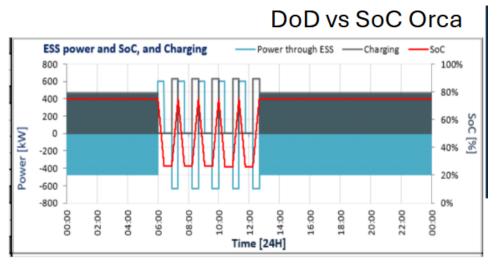


PARALLEL OPERATIONS - POWER

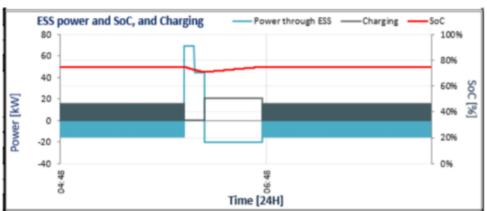


NEMOSHIP

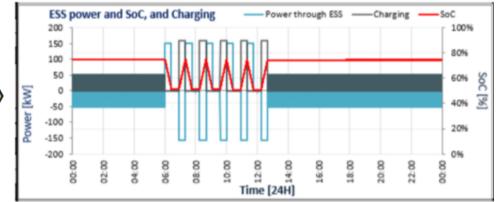




PARALLEL OPERATIONS – DOD/AGING



NEMOSHIP


SoC vs DoD DENG

Peak
Shaving in
combination
with load
levelling
cycles

SoC vs DoD DENG

Q&A

EXPERIENCES FROM NEMOSHIP 1.1 MWH HETEROGENEOUS BESS INSTALLATION

Kjetil Vatland Olsen, Solstad Wei He, Equinor

EXPERIENCES FROM NEMOSHIP 1.1 MWH HETEROGENEOUS BESS INSTALLATION

Wei He, Equinor

KEY FACTS OF THE 1.1 MWH BESS INSTALLATION

The total preparation and execution period was 14 months: May 2024 to July 2025.

BESS installation/testing/commissioning period at the shipyard: end of April to early July 2025

All NEMOSHOP partners contributed to the 1 MWh BESS installation plans via various tasks under NEMOSHIP.

- The three NEMOSHIP partners Corvus, Elkon, and Solstad, have direct interfaces to the 1 MWh BESS installations.
- Solstad had four major contractors: Wärtsilä, Vard, GMC Yard, and DNV:
 - Wärtsilä: System integrator
 - Vard: Ship designer for the hybrid battery room and the equipment layout
 - GMC Yard AS Stavanger: Providing all standard docking services and assisting with specialized services, and supporting sea trial completion
 - DNV: The required approvals, certifications and Failure Mode and Effects Analysis (FMEA)

SHIPYARD FOR THE 1.1 MWH BESS COMMISSIONING AND SEA TRIALS

NEMOSHIP

 The arrangements with the shipyard in Stavanger were crucial for the new 1 MWh BESS installation, testing and commissioning

Dimensions	Facilities	Services
 Measures: 140 x 22.5 m	Freshwater, compressed air	Standard docking
Azimuth pit: 6 x 6 x 2.4 m	 Power: 400 V 50 Hz 250 A 690 V 60 Hz 200 A 440 V 60 Hz 380 A Ballast water, slope, cranes: 3 shipyard cranes of 90 tonnes 	services and assistance with specialized services based on customer requests.

EXPERIENCES FROM NEMOSHIP 1.1 MWH HETEROGENEOUS BESS INSTALLATION

Kjetil Vatland Olsen, Solstad

NORMAND DROTT

NEMOSHIP

Normand Drott characteristics		
Owner Group	Solstad Maritime	
Built	2010	
Туре	Anchor Handling Tug Supply	
Flag	NOR	
LOA	95m	
Classification Society	DNV GL	
Dynamic Positioning	DP 2 from Kongsberg	
Accommodation	70 Persons	
Bollard Pull	339mt	
Deck Dimensions	760,2m² (36,2m x 21m)	
Deadweight	5000mt	

PLACEMENT OF BATTERY SYSTEM

- Vard study
- Conversion of fuel oil tank to battery hybrid room

CONVERSION

- Infrastructure of tank
- Rerouting of pipes
- Sizing of battery container and skid with power conversion and control equipment

NEMOSHIP

- Power consumer skid and battery container lifted onboard into the converted battery hybrid room
- Power consumer lifted onboard and then moved into right position further back.
- Battery container lifted in and moved straight into position.

CRITICAL ASPECTS INCLUDING DELIVERY TIME FOR EQUIPMENT

NEMOSHIP

- Critical aspects:
 - Safety (e.g., DNV approvals)
 - Cost increases
 - Risks to delay the installation schedule
- Delivery time for equipment:
 - Drives and transformers long delivery time.
 - On order May 2024 to reach installation May 2025

- Drydocking period and installation time end of April to beginning of July
- Battery functional tests. Alongside prior to sea trails
- Dynamic position (DP) failure model and effects analysis
- DNV battery power notation. Long approval and documentation process

NEMOSHIP BESS CONTROL WITH BPMS

Guénaël Le Solliec, CEA Saeed Kazemian, VUB Mert Can Celik, Elkon

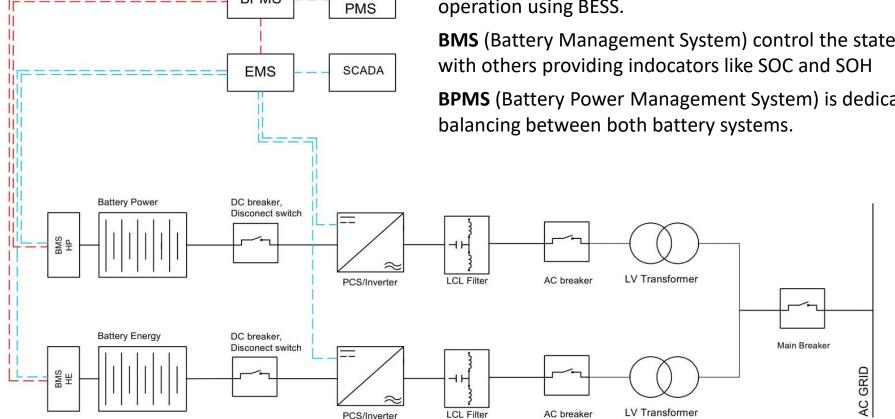
BPMS OVERVIEW

Guénaël Le Solliec, CEA

ELECTRICAL AND CONTROL ARCHITECTURE

BPMS

Vessel

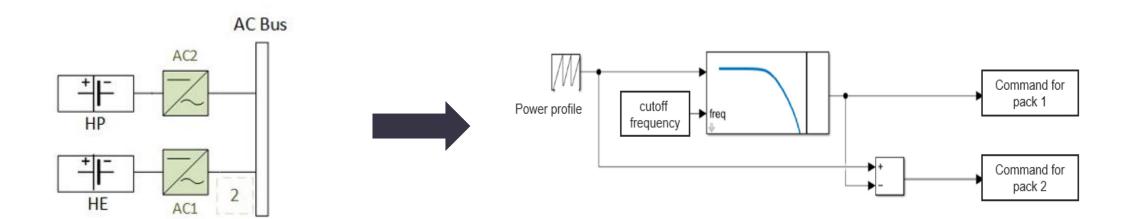

The electrical architecture integrates several key systems:

PMS (Power Management System) controls all power sources including Diesel generators

EMS (Energy Management System) aims to ensure energy efficient and reliable operation using BESS.

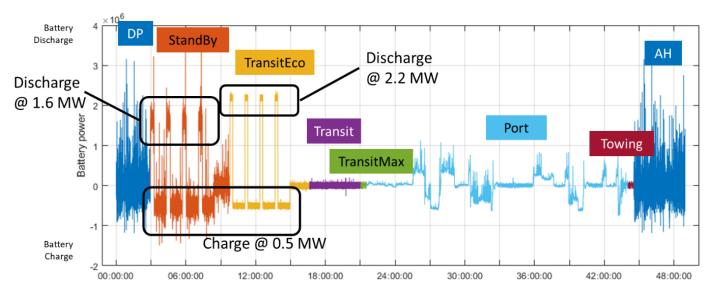
BMS (Battery Management System) control the states of the batteries and interact

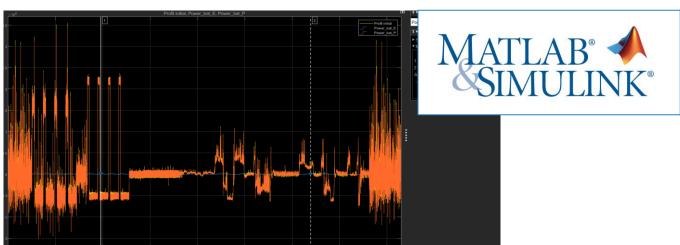
BPMS (Battery Power Management System) is dedicated to energy and power



RQ: For certification reason, BPMS is not intrusive. It provides setpoint that are finally applied by EMS.

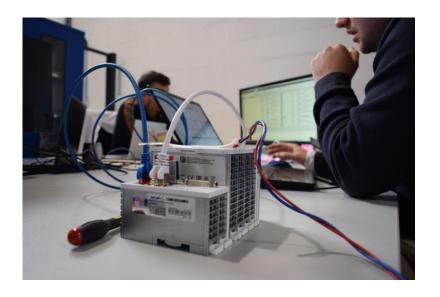
SOC: State of Charge SOH: State of Health




- PMS and EMS define power to be provide by overall BESS on AC bus.
- BPMS strategy split this power request in two power setpoints for HE and HP ESS based on a exponential filter.
- This kind of filter is basically set with a parameter named Tau, changing the frequency value of the filter.

BPMS V1 : PRELIMINARY DEVELOPMENT AND TUNING IN SIMULATION

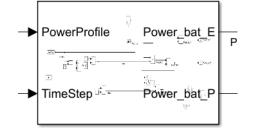
- Definition of a generic power profile taking into account all power variations met during vessel operations
- "Open-loop" power switch using only filtering without taking in account BESS states



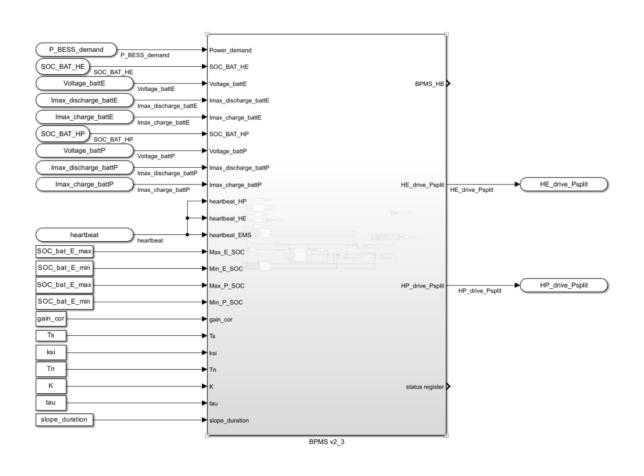
BPMS V2 : ALGORITHM IMPROVEMENT USING REAL-TIME HARDWARE IN THE LOOP (HIL) TESTING

Goal: Improve the robustness of the algorithm and limit battery aging

- Filter behavior: Change filter by a critically damped second-order filter. This helps better suppress high-frequency components and allows tuning gain and time constant for greater flexibility in adjusting the power distribution.
- Anti interpack current function: Power sign changes are not instantly followed in the HE battery power setpoint due to the inertia of the filtering. This phenomenon leads to losses in the converters and accelerated battery aging without providing any useful service -> Filter reset and slope.
- Anti-drift SOC function: Control loop based on the average SOC value of the HP battery to compensate HE SOC battery from drifting
- SOC limitation: Implemented SOC limit for the HP battery

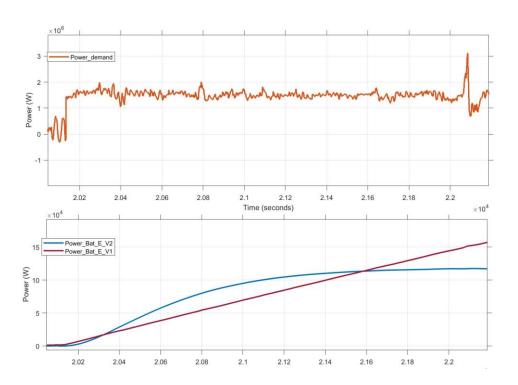


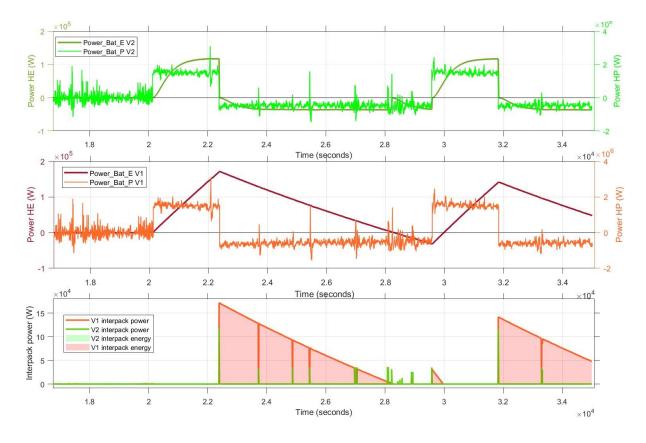
BPMS INPUTS/OUTPUTS



NEMOSHIP

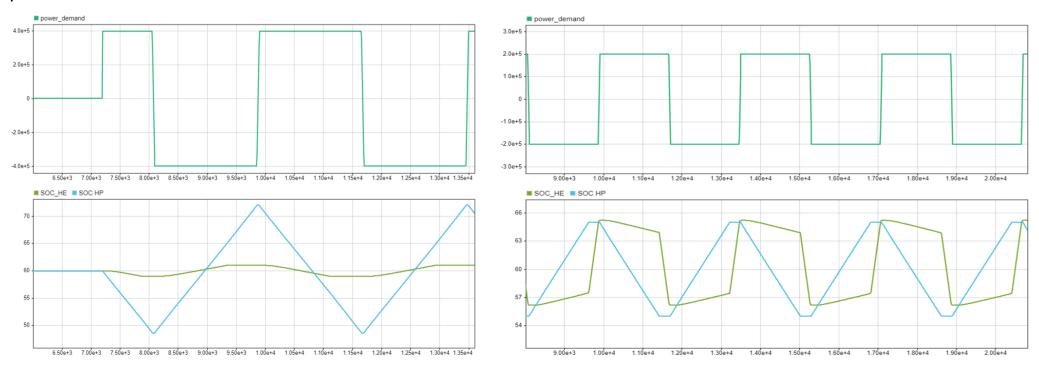
V1


V2


HIL VALIDATION RESULTS

Filter behavior: HE battery contributes its share of power during constant charge or discharge phases while rejecting high-frequency disturbances, which are handled by the HP battery

Anti interpack current function: a filter reset is triggered upon a sign change. To prevent abrupt transitions and frequent unintended resets, a smooth slope decrease is applied to the HE battery's power setpoint



HIL VALIDATION RESULTS

SOC limitation functions have been implemented on both HE and HP batteries. By restricting the SOC variation range, substantial gains in battery lifetime can be achieved. However, this limitation reduces battery availability, and a compromise must be found to best meet these criteria.

State-of-charge (SOC) limitation on the HE battery

SOC limitation on the HP battery, there is a transfer of charge to the HE battery

IMPACT OF BPMS VERSIONS ON BESS LIFETIME

Saeed Kazemian, VUB

BPMS

The NEMOSHIP tool evaluates two energy management strategies: V1 and V2, with various parameter sets

High Power (HP) Batteries

Designed for rapid discharge and charge cycles, ideal for dynamic maritime applications

High Energy (HE) Batteries

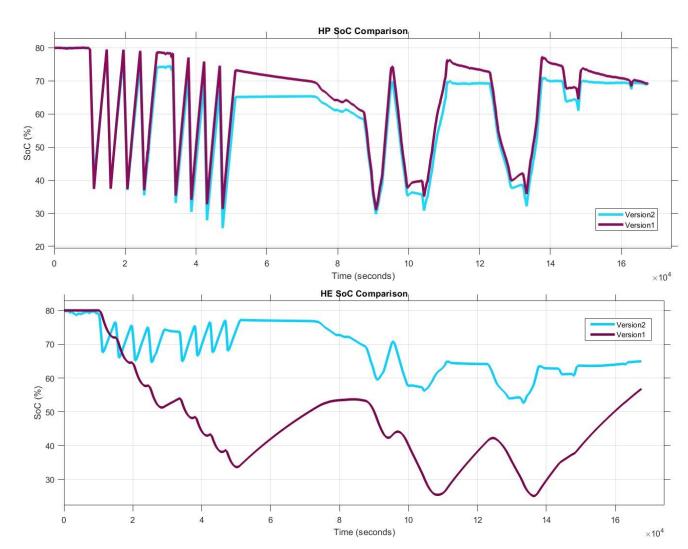
Optimized for sustained energy delivery, suitable for longer voyages and continuous operations

EOL

The end-of-life (EoL) is defined as 80% usable capacity, based on a weekly repeated 2-day power profile.

What impacts lifetime?

- Higher DoD per cycle accelerates degradation.
- Fast charging and high power demand increase internal stress.
- Frequent full cycles shorten lifespan.
- Smart power allocation and peak-shaving reduce stress on cells.

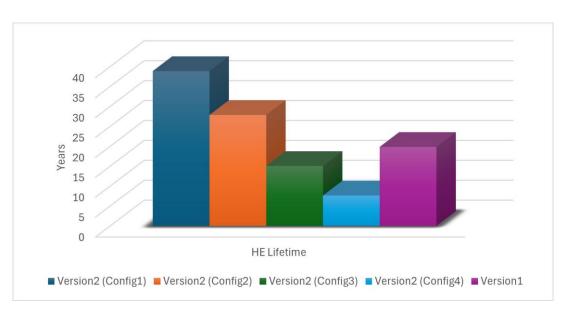


SOC ANALYSIS THROUGH BPMS VERSIONS

NEMOSHIP

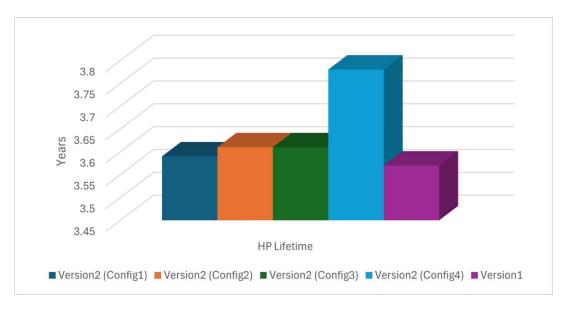
- V2 keeps HP battery in a slightly narrower and more stable SoC range.
- V2 HE battery shows more frequent but shallower cycles, avoiding the deep SoC swings.
- This overall reduction in SoC stress and avoidance of deep cycling leads to the lower degradation rate observed for V2.

BATTERY LIFETIME ANALYSIS THROUGH BPMS VERSIONS



NEMOSHIP

BATTERY LIFETIME ANALYSIS THROUGH BPMS VERSIONS



High Energy Battery estimated lifetime

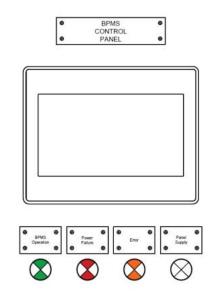
Around 50% improvement (best case in V2 compared to V1)

Around 7% improvement (best case in V2 compared to V1)
 High Power Battery estimated lifetime

- Parameters in BPMS-V2-Config4 offer best trade-off between durability and performance.
- Both battery types benefit from context-specific parameter tuning.

OPTIMIZING MARINE BATTERY LIFE / CONCLUSION OF THE BPMS STUDY

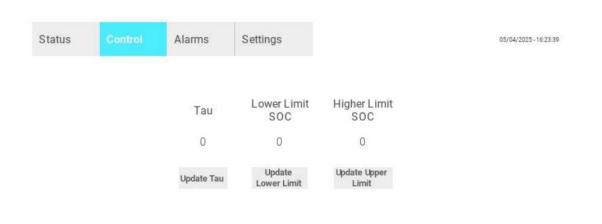
- The lifetime assessment is primarily designed to offer a consistent and robust basis for comparing different BPMS versions, parameter selections, and energy-sharing strategies, rather than focusing on absolute lifetime predictions.
- Results highlight how SoC management, cycle depth, and power allocation strongly influence battery wear in marine profiles.
- V2 also enables synchronized HP/HE replacement cycles (e.g., 2× HP per 1× HE), simplifying maintenance planning.
- Insights support design choices, parameter tuning, and future EMS development toward durability-focused strategies.



BPMS INTEGRATION AND DEPLOYMENT

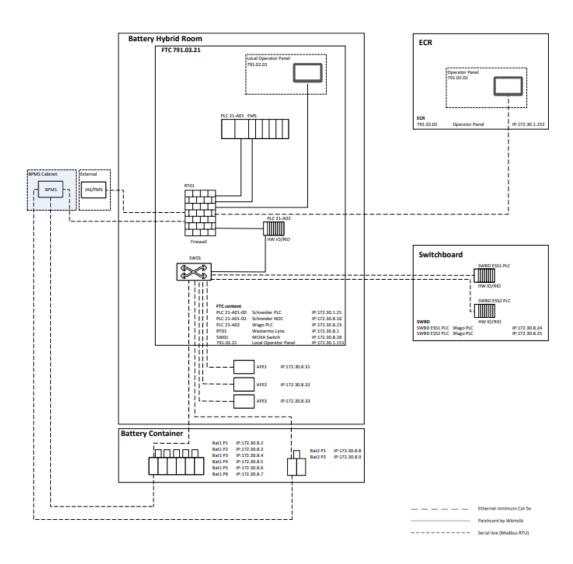
Mert Can Celik, Elkon

BPMS PANEL & INTERFACE



BPMS PANEL & INTERFACE

Select	Name	State	Time	Description		
	Power Supply Failure	Not Triggered Not Acked	04/05/25 - 16:14:24	Cabinet supply voltage is missing		
	Ethernet Switch Alarm	Triggered Not Acked	04/05/25 - 16:14:30	Communication cable is unplugged		
	Additi					



NEMOSHIP

Variable name	Access	Туре	Address (could be change)	Register length	Unit	description
BPMS_HB	RW - Holding register	Uint 16	40001	1		BPMS heartbeat signal to check communication status
HE_drive_Psplit	RW - Holding register	Int16	40002	1	kW/10	HE drive power split
HP_drive_Psplit	RW - Holding register	Int16	40003	1	kW/10	HP drive power split
EMS_HB	R - input register	Uint16	30001	1		EMS heartbeat signal to check communication status
P_BESS_Demand	R – input register	Int16	30002	1	kW/10	Global power demand = total BESS power (HE and HP) - how much the batteries should deliver
VDC_HE_drive	R - input register	Int16	30003	1	V/10	DC voltage of the HE drive
IDC_HE_drive	R - input register	Int16	30004	1	A/10	DC Current of the HE drive
PDC_HE_drive	R - input register	Int16	30005	1	kW/10	DC side Power of the HE drive
PAC_HE_drive	R - input register	Int16	30006	1	kW/10	AC side Power of the HE drive
Status_HE_drive	R - input register	Uint 16	30007	1		Status (available, fault, running) -TBD
VDC_HP_drive	R - input register	Float	30008	1	V/10	DC voltage of the HE drive
IDC_HP_drive	R - input register	Float	30009	1	A/10	DC Current of the HE drive
PDC_HP_drive	R - input register	Float	30010	1	kW/10	DC side Power of the HE drive
PAC_HP_drive	R - input register	Float	30011	1	kW/10	AC side Power of the HE drive
Status_HP_drive	R - input register	Uint 16	30012	1		Status (available, fault, running) -TBD

ACTIVITIES RELATED TO BPMS

Results achieved so far:

- BPMS panel production completed
- BPMS FAT completed
- BPMS successfully shipped to Solstad

Next steps:

- BPMS panel mechanical and electrical installation on Solstad vessel
- BPMS panel HAT/SAT & commissioning

Q&A

CLOSING

CLOSING

Thanks for your participation!

To keep in touch with us:

• Email: <u>contact@nemoship.eu</u>

Linkedin: <u>NEMOSHIP</u>

Website: https://nemoship.eu/

Save the date:

Next NEMOSHIP event will be held on **Thursday January 29th morning** – In person in Grenoble France and remotely via Livestorm.

Registration link will soon be available on our Linkedin and website!

NEMOSHIP

Thank you for your attention

The NEMOSHIP project has received funding from the European Union's Horizon Europe Research and Innovation programme under grant agreement No 101096324. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or or the European Climate, Infrastructure and Environment Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

